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Abstract. 'We present results of high-statistics simulations of the spreading of 2> per-
colation, and of backbones of 2> percolation clusters. While the algorithm employed
for the spreading is more or less standard, for identifying backbones we use a new and
very efficient recursive algorithm. We use our new critical exponents to test previous
conjectures.

1. Introduction

The ‘classical’ critical exponents for percolation (those which are analogous to the
usual critical exponents in thermodynamic spin models, and in the Potts model in
particular) are now well understood in two dimensions. This is not to the least due
to the conformal invariance which ficld theories in two dimensions obey.

For percolation there are, however, also a number of other critical exponents
which scem to have no analogue in thermodynamics, and which cannot yet be com-
puted exactly, even in two dimensions.

One such exponent is the fractal dimension of the ‘backbone’ [1]. Consider bond
percolation on a square lattice, and assume that all sites on the x-axis and on the
opposite edge # = L are wetted. The backbone is then defined as the set of all

sites in the interior of the lattice which are connected by conducting bonds to both
edges, by two paths which have no edge in common. Except for ‘Wheatstone bridges’,
it consists exactly of those sites through which current would flow if the two edges
z = 0 and z = L were subject to a potential difference. The average number of sites
in the backbone scales at p = p, as Ny ~ LP®, where Dp is its fractal dimension.
Another important exponent is the ‘spreading dimension’ [2] d defined via the

average mass M, which is connected to some randomly chosen centre by a shortest

path of length < t. It is defined as {M,) ~ t¢, where the averaging is done over all
clusters which contain at least one site whose shortest path from the centre has length
> t. It can be interpreted as the size of a region infected within ¢ time steps by an
epidemic spreading just marginally from a single infected site, and conditioned on
those epidemics which have not yet died out. Related to the spreading dimension are
a number of other exponents, as e.g. that giving the growth of the average radius of
the cluster of infected sites, or the fractal dimension d;, of shortest paths between
two randomly chosen points on the incipient infinite cluster [3,4].

Finally, there are exponents describing the spectral density of the Laplace operator
on the fractal, and related exponents describing electric conductivity at and near the
critical point [6].
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It is an important open question whether these sets of exponents are related. For
instance, there is a conjecture due to Herrmann and Stanley [5] which says that

dmin = 2~ Dp +1/v ()

and which was up to now compatible with the best available estimates. Also, it is not
known whether they are rational numbers like thermal exponents in two dimensions.

It is the aim of the present paper to clarify this situation by prcv;dmg Monte Carlo

estimates of these exponents which are substantially more precise than previous ones.
While we use an essentially standard Leath-type algorithm for simulating spreading
[4], we use a novel and highly non-trivial algorithm for identifying backbones.

2, Spreading

As already stated, we used for spreading essentially the algorithm described in [4].
This consists of starting the ‘epidemic’ not from a single site, but from one boundary of
a rectangular lattice with sidewise periodic boundary conditions, ie. with the topology
of a cylinder. At any ‘generation’ ¢, newly wetted sites must be neighbours of sites
which had been wetted just in the last generation. We call these latter sites ‘growth
sites’. In order to enhance the efficiency of the program, we store their coordinates
in an array which is updated at every generation.

The observables measured are the number of growth sites N, and their average
distance x, from the seeding edge. The distance should satisfy the scaling law

z, ~ VY 2

where v, iS related to the thermal exponents, the spreading dimension, and to the
fractal dimension d; by [4, 7]

l/df dv - 3
v, = — .

d d

)

It is related to the shortest path dimension d
growth sites satisfies

[5] as d_;,, = v, /v. The number of

min

N, ~t* {4)

with

®)

Compared to [4], the statistics in the present paper are larger by roughly two
orders of magnitude. Altogether 15264 lattices of width 16384 were simulated for
5000 generations each, This corresponded to about 1.5 x 10! wetted sites. This
high statistics was possible by using new hardware (mostly a DEC station 2100)
and several small improvements in the algorithm which together gave nearly one
order of magnitude increase in speed. These improvements involved use of multi-
spin coding (1 bit per site), writing both coordinates into one word, and using
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Figure 1. Effective exponent z.g(t) versus 1 /¢ for 2> critical bond percolation.

one single bit of a random word for determining whether a bond was open or
not. The latter obviously depended on the fact that we simulated bond percola-
tion where p, is known to be exactly 1/2. For random number generators (RNG),
we used two shift-register generators, namely i, = i,_,3; XOR ¢,_,5, (8] and
t, = i,_157 AOR i,_3,4 XOR i, _471 XOR i _g4 [9]- Both were implemented
with 32-bit integers which reduced the number of RNG calls drastically. The number
of wetted sites per second was ca 70.000 on the DEC station (which runs at about 12
MIPS).

V)Vhen fitting the above scaling laws, we have to take into account two possible
sources of error. On the one hand, (2) and (4) give only leading terms, and should
in general be supplemented with terms involving smaller exponents (‘confluent sin-
gularities’). On the other hand, neither the origin of time nor the origin of space
are g priori fixed to better than roughly one lattice constant and one generation,
respectively. Equations (2) and (4) should thus in general be replaced by

T, = @y + At~ to) /" (1 + :Tll + ) ©
and
N,=B{(i~-1t }_2/1'5'"{')'1—-"5'"'\' @
t 0 \ th }

We found that indeed no good fit was obtainable with the uncorrected equations (2)
and (4). But all observed corrections to scaling could be absorbed into two constants
zo = 0.2 and t, = 0.62, and no further confluent singularities were needed. The
resulting effective exponents z,q(1) and (v /v,).q(t), defined as obtained from least-
squares fits over intervals [¢/8,¢], are plotted in figures 1 and 2. The extrapolations
to t = co give z = 0.208 + 0.001 and »/v, = 0.8843 £ 0.0003. Using the exact
values v = 4/3, 3 = 5/36, we obtain from the latter

v, = 1.5078 + 0.0005 d,i, = 1.1307 4 0.0004 d =1.6765 £ 0.0006 (8)
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Figure 2. Similar to figure 1, but effective exponent (v /ve) g(t).

Compared to this, the measured value of z is much less precise, and thus con-
tributes little to the determination of the critical exponents. It provides, however,
a very welcome consistency test. Using (5) and (8), we would have predicted
z = 0.2078 + 0.0003 in obvious agreement with the direct measurement. This
verifies that we have indeed been working at the critical point.

Equation (8) is fully compatible with the most precise previous estimates of v,
[4,5], but is one order of magnitude more precise.

3. Backbones

In contrast to the simulations of entire percolation clusters, up to now there did not
exist any very efficient algorithm for identifying their backbones. The algorithm used
in [1], e.g. seems to have been very slow. Much faster is an algorithm due to Tarjan
[10]. It is a recursive depth-first algorithm, and has a time complexity O( N) where N
is the number of sites in the cluster, It is not very easy to implement, and it requires
a considerable amount of storage since it needs two counters for each occcupied site,
in addition to the variables indicating the occupancy of each bond resp. site. Finally,
there exists an algorithm due to Roux and Hansen [11]. It also seems not casy to
implement. It should be slower than Tarjan’s (as one needs several passes through
the lattice), but no detailed comparison is available.

The present results are based on a new algorithm which is about twice as fast
as Tarjan’s, and needs about half as much storage. It is also a recursive depth-first
algorithm, but of rather different structure. In contrast to Tarjan’s algorithm, it works
only for planar graphs, hence it could not be applied to 3D percolation or to 2D
percolation on lattices with non-trivial (e.g. cylindrical) topology.

Let us consider site percolation on a square lattice where all sites on the z-axis
and on the opposite edge ¥ = L are wetted, while all sites on the side edges « = 0
and x = L are non-wetted. The backbone consists then of non-self-intersecting paths
connecting the edges ¥ = 0 and y = L, and containing only occupied sites.

In order to understand our algorithm, let us first discuss a simpler recursive
algorithm which just tests whether there is a percolating cluster by giving the left-
most connecting path and the tangling parts of the cluster left of it (see figure 3).
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This will be part of the final algorithm. It involves four subroutines ‘east’, ‘west’,
‘south’ and ‘north’, each corresponding to one step in the corresponding direction,
By recursive calls, the algorithm generates a branched path which starts at z = y = 0
and essentially (though not exactly) follows the left part of the hull of the cluster
containing the x axis. A ‘C’ program for this would Jook as follows.

void morth(int x, int y), ... ;
int s[L][L];

int x,y;

float p;

main()

oONTAR . F P wmndt [147 -/
FLlx LLUHL L@l . LLL]d -7

P *
do (x=0;x<L;x++) mnorth(x,0);
printf(“cluster does not percolate '\n")

| -4
- -

}
north{x,y)
{
if (y<L)
{
if (slx][yl==0)
{
s[x1[yl=1;
if (rand()<p)
{
west{x-1,y);
north(x,y+1};
east(x+1,y);
}
}
}
else
{
printf("cluster percolates !\a")};
exit(0);
}
}
east(x,y)
{
if (x<L)
{
if (s[x][yl==0)
{
s(x] [yl=1;
it (rand()<p)
{

north(x,y+1);
east{x+1,y);
south(x,y~1);
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}
}

}
}
south(x,y)
{

it (y»0) { ... }
}
vest(x,y)
{

it (x>0) { ... }
}

Notice that here the four subroutines could easily have been combined into a
single subroutine, but keeping four distinct subroutines makes the subsequent modi-
fications easier.

The first modification consists of labelling each site not only by s(x][y]=t
or s{x] [yl=0 for tested/non-tested, but by s=0 (non-tested), s=q (occupied) and
s=INT_MAX (empty). Here g is any positive integer less than INT_MAX. In a second
modification, we count the number of sites in the backbone by incrementing a counter
‘m’ each time when entering a subroutine, and decrementing it when leaving. If the
routine stops since it reached the far side y = L, then all steps in the backbone
correspond to subroutine calls which are not yet exited, and the value of m is just
the size of the backbone. After these modifications, subroutine ‘west’ reads e.g.

west(x,y) /
{
it (y>0)
{
it (s[x][y]l==0)
{
if (rand(}<p)
{
m++;
s[x] [yl=q;
south(x,y-1};
west(x-1,y);
north(x,y+1);
m--;
}
else s[x][yl=INT_MAX;
}

}

The last modifications have to be such as to count also all other connecting paths.
For this we first remove the ‘exit’ in subroutine ‘north’. Instead we increase g each
time when either the the upper edge is reached, or if ¢ is larger than a tested non-
zero s[x]1[yl. Next, we replace the unconditional decrement of m by a decrement
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(@)

Figare 3. (a) Part of the percolating cluster on a 60 x 60 lattice. The construction of
the percolating cluster started at the lower left comer. Following a branched random
walk, it traced out the left (‘western’) rim of the cluster. Light points are sites which
upon testing have been found to be blocked. Crosses are unblocked sites which belong
to tangling ends (and thus do not belong to the backbone). Finally, the line of heavy
dots is the leftmost part of the backbone. The figure is taken just before the moment
when the walk hits first the upper edge. (b) The same cluster after completion.

under the condition that ¢ has not changed since entering the subroutine. This s
so since a change of g indicates that either the upper edge had been reached after
the subroutine had been entered (in which case the site belongs to the backbone),
or that a site belonging to the backbone had been hit (in which case the present site
also belongs to the backbone).

In this way we would, however, after first hitting the upper edge, trace out not the
most ‘western’ but the most ‘eastern’ path back to the lower edge, and we would have
trouble to correctly find the inner parts of the backbone. To avoid this, we have to
remember whether we are moving upward or downward. In the former case, we take
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the left-most branches first, in the latter case we first try the right-most branches.
A cheap way to remember the direction of walking consists of encoding it in the
evenness/oddness of q. Thus we start with even g (say ¢ = 2), increase ¢ to the next
higher odd number when hitting the upper edge, increase it to the next higher even
number when hitting the edge = = 0, and increase it by 2 units when hitting any
other backbone site. This brings e.g. subroutine ‘west’ into the form

int m,q;
west(x,y)
{
it (y>0)
{
it (s[x] [yl==0)
{
if (rand()<p)
{
mé+;
s[x][yl=q;
if (q&1==0)
{
south({x,y-1);
vest(x-1,y);
north(x,y+1);
}
else
{
north(x,y+1);
west(x-1,y);
south(x,y-1);
}
if (q==aix]1[yl) m—-;
}
else s(x][yI=INT_MAX;
}

else if (q>s[x][yl) q+=2;

I

Finally, there are a number of minor details (like e.g. emptying the stack after
each run) which we do not want to discuss here. The algorithm was first implemented
on a home computer where the interactive graphics was essential to get it bug-free.
After optimization, it ran at about 43.000 wetted sites per second on the DEC station
2100.

We analysed lattices with L = 5,7,10,14,20,28,...1280. For each L, the
number of realizations was between > 10° (for the lattices with L < 320) and about
2 x 10° (for L = 1280). The percolation probability P was somewhat larger than
172 for all lattice sizes, and seemed to converge rather slowly to 1/2 for L — oo.
Convergence to P = 1/2 is indeed expected from universality with bond percolation.
For p_ we used the value 0.592 745 of [12].
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Figure 4. Log-log plot of In{ N /L'-52) versus In L.

The effective dimension of the backbone, defined as average local slope in a
log—log plot, was clearly rising with L. For small lattices (L ~ 30), we found
Dy & =~ 1.62 as in [1,13, 14]. But, as seen from figure 4, the extrapolation to
L = oo gives a definitely larger value. A precise extrapolation was made difficult by
the large corrections to scaling, and by the slow convergence of P. Fitting an ansatz
with a confluent singularity as in (6), we obtain &, ~ 0.6 and

Dp = 1.647 + 0.004. O

This is a factor of 5 more precise than the value Dy = 1.62 4+ 0.02 of [1,13],
and slightly outside their error bars. The values 1.614+0.01 of [14] and 1.71£0.01
of [15], though formally more precise, seem definitely ruled out.

4. Conclusions

Our simuiations provide estimates of two ‘non-ciassic’ critical exponents for 2D per-
colation which are by far the most precise to date.

These estimates (8) and (9) together rule out the Herrmann—Stanley conjecture
(1) by about 6 standard deviations. This is one of our main conclusions.

Another motivation was to look for rational expressions of the exponents, as this
could give some hope of obtaining them from conformal invariance. Of course it is
easy to repiesent any real number by a rational one, as long as the erior bars areé not
zero. With errors as in (8), one can give already many fractions with denominator
and denumerator both less than 100. But we want somewhat more. For instance, a
very good approximation to the spreading dimension would be d =57/34, Insertmg
this into (3} would however give v /v, = 1368/1547, which does not look nice at all.
What we want are rational expressions with small denominators for all 3 exponents

hnrdar tn End Tha Aanhe nramicing condidata om faa

7 nA
Ut, l-l- umln llllD m lllu\vll llalubl (L L P ULV Py o ¥ Ulll." }JIUI.II.IJIIIE AU LY VYW lUulI\-l Wab

v, = 46/39 dpin = 26/23 d = 161/96. (10)

We conjecture that this might indeed be exact. For the backbone dimension, the
error is too large for selecting a uniquely looking rational expression.
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