
Spreading and backbond dimensions of 2D percolation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1992 J. Phys. A: Math. Gen. 25 5475

(http://iopscience.iop.org/0305-4470/25/21/009)

Download details:

IP Address: 171.66.16.59

The article was downloaded on 01/06/2010 at 17:27

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/25/21
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A Math. Gen. 25 (1992) 54756484. Printed in the UK 

Spreading and backbone dimensions of ZD percolation 

P Grassberger 
Physics Department, University of Wpperlal, D-5600 Wuppenal 1, Federal Republic of 
Germany 

Received 9 March 1992. in final form 1.5 June 1992 

AbstrPeL We present results of high-slatistics simulations of lhe spreading of w per- 
mlation, and of backbones of m permlation dusters. While the algorithm employed 
for the spreading is more or less standard, for identifying backbones we use a new and 
vey efficient recursive algorithm. We we our new crilical exponents to lest previous 
mnjectures. 

1. Introduction 

The 'classical' critical exponents for percolation (those which are analogous to the 
usual critical exponents in thermodynamic spin models, and in the Potts model in 
particular) are now well understood in two dimensions. This is not to the least due 
to the conformal invariance which field theories in two dimensions obey. 

For percolation there are, however, also a number of other critical exponents 
which seem to have no analogue in thermodynamics, and which cannot yet be com- 
puted exactly, even in two dimensions. 

One such exponent is the fractal dimension of the 'backbone' [l]. Consider bond 
percolation on a square lattice, and assume that all sites on the z-axis and on the 
opposite edge z = L are wetted. The backbone is then defined as the set of all 
sites in the interior of the lattice which are connected by conducting bonds to both 

it consists exactly of those sites through which current would flow if the two edges 
z = 0 and I = L were subject to a potential difference. The average number of sites 
in the backbone scales at p = p ,  as NB - LDB, where D, is its fractal dimension. 

Another important exponent is the 'spreading dimension' [2] 8 defined via the 
average mass Mi which is connected to some randomly chosen centre by a shortest 
path of length < 1. It is defined as ( M i )  - I d ,  where the averaging is done over all 
clusters which contain at least one site whose shortest path from the centre has length 

1. It can be interpreted as the size of a region infected within t time steps by an 
epidemic spreading just marginally from a single infected site, and conditioned on 
those epidemics which have not yet died out. Related to the spreading dimension are 
a number of other exponents, as e.g. that giving the growth of the average radius of 
the cluster of infected sites; or the fractal dimension dC:= of shortest pa th  between 
two randomly chosen points on the incipient infinite Cluster [3,4]. 

Finally, there are exponents describing the spectral density of the Laplace operator 
on the fractal, and related exponents describing electric conductivity at and near the 
critical point [6]. 

edges, by two path which hwe "e g g e  i" P"mmcn. Except fer '\?lheltstO.".P bridges', 
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It is an important open question whether these sets of exponents are related. For 
instance, there is a conjecture due to Herrmann and Stanley [5] which says that 

(1) dmi, = 2 - D, + 1 /U 
and which was up to now compatible with the best available estimates. Also, it is not 
known whether they are rational numbers like thermal exponents in two dimensions. 

estimates of these exponents which are substantially more precise than previous ones. 
While we use an essentially standard Lath-type algorithm for simulating spreading 
[4], we use a novel and highly non-trivial algorithm for identifying backbones. 

!t b the & nf the nrerent r----- &rif;. *s sipdr~e:: &j p:cvi&g p.fcn:e =i:Cj 

2. Spreading 

As already stated, we used for spreading essentially the algorithm described in [4]. 
This consists of starting the ‘epidemic’ not from a single site, but from one boundary of 
a rectangular lattice with sidewise periodic boundary conditions, i.e. with the topology 
of a cylinder. At any ‘generation’ t, newly wetted sites must be neighbours of sites 
which had been wetted just in the last generation. We call these latter sites ‘growth 
sites’. In order to enhance the efficiency of the program, we store their coordinates 
in an array which is updated at every generation. 

The obselvables measured are the number of growth sites Nt and their average 
distance xt from the seeding edge. The distance should satisfy the scaling law 

(2) xt - p l y ’  

where ut is related to the thermal exponents, the spreading dimension, and to the 
fractal dimension d, by [4,7 

It is related to the shortest path dimension dmi, [5] as dmi, = ut /U. The number of 
growth sites satisfies 

Nt - t-’ (4) 

with 

(5) 

Compared to [4], the statistics in the present paper are larger by roughly two 
orders of magnitude. Altogether 15264 lattices of width 16384 were simulated for 

ahout 1:s x 10” wetted sites, This 
high statistics was possible by using new hardware (mostly a DEC station 2100) 
and several small improvements in the algorithm which together gave nearly one 
order of magnitude increase in speed. These improvements involved use of multi- 
spin coding (1 bit per site), writing both coordinates into one word, and using 

S M O  - _ _ _  generatinns each; mrrespnnded 
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.wL.d‘ng of 2.d band prEolDt ion f rom line 

-0.206 

Figure 1. Effective a p n e n t  z e n ( t )  v e m s  I l t  for ED critical bond permlation 

one single bit of a random word for determining whether a bond was open or 
not. The latter obviously depended on the fact that we simulated bond percola- 
tion where pc  is hown to be exactly lL2. R r  random number generatori (RNG), 
we used two shift-register generators, namely in = in_,,, XOR i ,-zso [SI and 
in = in-lJ7 XOR in-,,, XOR in_,,, XOR in_,,,, [9]. Both were implemented 
with 32-bit integers which reduced the number of RNG calls drastically. The number 
of wetted sites per second was ca 70.000 on the DEC station (which mm at about 12 

When fitting the above scaling laws, we have to take into account two possible 
sources of error. On the one hand, (2) and (4) give only leading terms, and should 
in general be supplemented with terms invoking smaller exponents (‘confluent sin- 
gularities’). On the other hand, neither the origin of time nor the origin of space 
are a priori k e d  to better than roughly one lattice constant and one generation, 
respectively. Equations (2) and (4) should thus in general be replaced by 

MIPS). 

It = zo + A(t - 
and 

We found that indeed no good fit was obtainable with the uncorrected equations (2) 
and (4). But all observed corrections to scaling could be absorbed into two mnstants 
zo = 0.2 and to = 0.62, and no further confluent singularities were needed. The 
resulting effective exponents zerr(t) and ( v / ~ ~ ) ~ ~ ( t ) ,  defined as obtained from least- 
squares fits over intervals [t/8,t], are plotted in figures 1 and 2 The extrapolations 
to t = a3 give z = 0.208 f 0.001 and ./ut = 0.8843 & 0.0003. Using the exact 
values v = 4/3, p = 5/36, we obtain from the latter 

v, = 1.5078&0.0005 d,,, = 1.1307f0.0004 d = 1.6765f0.0006(8) 
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Flyn 2. Similar to figure 1, buI effective exponent (u/vt)c*(f)  

Compared to this, the measured value of f is much less precise, and thus con- 
tributes little to the determination of the critical exponents. It provides, however, 
a very welcome consistency test. Using (5)  and (8), we would have predicted 
t = 0.2078 + 0.0003 in obvious agreement with the direct measurement. This 
verifies that we have indeed been working at the critical point. 

Equation (8)  is fully compatible with the most precise previous estimates of vt 
[4,5], but is one order of magnitude more precise. 

3. Backbones 

In contrast to the simulations of entire percolation clusters, up to now there did not 
exist any very efficient algorithm for identi@ing their backbones. The algorithm used 
in [l], e.g. seems to have been very slow. Much faster is an algorithm due to Brjan 
[lo]. It is a recursive depth-first algorithm, and has a time complexity O( N) where N 

a considerable amount of storage since it needs two counters for each mcupied site, 
in addition to the variables indicating the occupancy of each bond resp. site. Finally, 
there exists an algorithm due to Row and Hansen [ll]. It also seems not easy to 
implement. It should be slower than Tdrjan's (as one needs several passes through 
the lattice), but no detailed comparison is available. 

The present results are based on a new algorithm which is about twice as fast 
as I j a n ' s ,  and needs about half as much storage. It is also a recursive depth-first 
algorithm, but of rather different structure. In contrast to Brjan's algorithm, it worh 
only for planar graphs, hence it could not be applied to 3D percolation or to ZD 
percolation on lattices with non-trivial (e.g. cylindrical) topology. 

Let us consider site percolation on a square lattice where all sites on the x-axis 
and on the opposite edge y = L are wetted, while all sites on the side edges x = 0 
and x = L are non-wetted. The backbone consists then of non-self-intersecting paths 
connecting the edges y = 0 and y = L ,  and containing only occupied sites. 

In order to understand our algorithm, let us first discuss a simpler recursive 
algorithm which just t a t s  whether there is a percolating cluster by giving the left- 
most connecting path and the tangling parts of the cluster left of it (see figure 3). 

B the n.m.ber of siter in &Exer. not vey e+, to im.p!em*efit, it reql?irpr 
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This will be part of the final algorithm. It involves four subroutines 'east', 'west', 
'south' and 'north', each corresponding to one step in the corresponding direction. 
By recursive calls, the algorithm generates a branched path which starts at x = y = 0 
and essentially (though not exactly) follows the left part of the hull of the cluster 
containing the x axis. A 'C' program for this would look as follows. 

void north(int x, int y), . . . ; 
int s CL1 CLI ; 
int x,y; 
float p; 
main( ) 
c 

/+ I_-_ --a r 4 4 7  .I p = .592?48; LA"." L O A .  L A I ,  -, 
do (x=O;x<L;xt+) north(x.0); 
printf ("cluster does not percolate !\n") 

1 
north(x,y) 
I 

i f  (y<L) 
I 

if (sCxl Cyl==O) 
c 

8 Cxl cy1 =1; 

c 
if (rand()<p) 

uest(x-1 ,y); 
north(x, yt i )  ; 
east(x+l,y); 

1 
> 

> 
else 
i 

printf ("cluster percolates !\n"); 
exit (0) ; 

> 
> 
east (x, y) 
c 

if (x<L) 
c 

if (sCxl Cyl==O) 
c 

s [XI cy1 =1; 

I 
if (rand()<p) 

north(x , yt 1)  ; 
east(x+i,y); 
south(x ,y-i) ; 
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1 
1 

1 
1 
south(x,y) 
c 
1 
west (x.y) 
c 
1 

if (y>O) I . . . 1 

if (x>O) C . . . 1 

Notice that here the four subroutines could easily have been combined into a 
single subroutine, but keeping four distinct subroutines makes the subsequent modi- 
fications easier. 

The first modification consists of labelling each site not only by sCxl Cy1.1 
or s[xl [yl=O for testedhon-tested, but hy s=O (non-tested), s=q (occupied) and 
S=INT-HAX (empty). Here q is any positive integer less than IUT-HAX. In a second 
modification, we count the number of sites in the backbone hy incrementing a counter 
‘m’ each time when entering a subroutine, and decrementing it when leaving. If the 
routine stops since it reached the far side y = L,  then all steps in the backbone 
correspond to subroutine calls which are not yet exited, and the value of m is just 
the sue  of the backbone. After these modifications, subroutine Lwest’ reads e.g. 

f sest(x,y) 
c 

if (y>O) 
c 

if (sCxl Cyl==O) 
c 

if (randO<p) 
c 

in++; 

south(x,y-1); 
west(x-1.y); 
north(x.yt1); 

s [XI cy1 =q; 

in--. 

1 
else sCx1 Cyl=INT-HAX; 

1 
1 

> 
The last modifications have to be such as to a u n t  also all other connecting paths. 

For this we first remove the ‘exit’ in subroutine ‘north’. Instead we increase q each 
time when either the the upper edge is reached, or if q is larger than a tested non- 
zero s [XI Cy], Next, we replace the unconditional decrement of m by a decrement 
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Flgore 3. (0) Part of the percolating dusler on a 60 x 60 lattice. l k e  COnslNCliOn of 
the permlating cluster started at the lower left mrner. Following a branched random 
walk, if lraced out the left (Western’) rim of the dusler. fight points am s i t s  wkich 
upon testing have been found lo be blocked. Croses are unbloeked s i t s  which belong 
la tangling ends (and thus do not belong IO Ihe backbone). Finally, the line of heavy 
dots is the leflmost part of the backbone. ’he figure is taken just before the moment 
when the walk hits fin1 the upper edge. (b) The Same duster afler wmplelion. 

under the condition that q has not changed since entering the subroutine. Thh 
so since a change of q indicates that either the upper edge had been reached after 
the subroutine had been entered (in which case the site belongs to the backbone), 
or that a site belonging to the backbone had been hit (in which case the present site 
also belongs to the backbone). 

In this way we would, however, after first hitting the upper edge, trace out not the 
most ’western’ but the most ‘eastern’ path back to the lower edge, and we would have 
trouble to correctly find the inner parts of the backbone. Ib avoid this, we have to 
remember whether we are moving upward or downward. In the former case, we take 
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the left-most branches first, in the latter case we first try the right-most branches. 
A cheap way to remember the direction of walking consists of encoding it in the 
evenness/oddness of q. Thus we start with even q (say q = 2), increase q to the next 
higher odd number when hitting the upper edge, increase it to the next highe.1 even 
number when hitting the edge I = 0, and increase it by 2 units when hitting any 
other backbone site. This brings e.g. subroutine ’west’ into the form 

int m,q; 

asst(x,y) 
c 
... 

if (y>O) 
c 

if ( 8  Cxl Cy1 ==O) 
r 

if (randO<p) 
c 

m++; 
8 [XI Cy1 =q; 
if (q&i==O) 
c 

south(x,y-1); 

north(x. y+l) ; 
sest(x-i,y); 

> 
else 
c 

north(x.y+l); 

south(x,y-1) ; 
> 
if (q==s [XI Cy1 GI--; 

aest(x-1.y); 

> 
else sCxl Cyl=INTJlAX; 

> 
e l s e  if (q>sCxlCyl) q+=2; 

? 
> 

Finally, there are a number of minor details (like e.g. emptying the stack after 
each run) which we do not want to discuss here. The algorithm was first implemented 
on a home computer where the interactive graphics was essential to get it bug-free. 
After optimization, it ran at about 43.000 wetted sites per second on the DEC station 
2100. 

We analysed lattices with L = 5,7,10,14,20,28,. . ,1280.  For each L, the 
number of realizations was between > lo6 (for the lattices with L < 320) and ahout 
2 x lo5  (for L = 1280). The percolation probability P was somewhat larger than 
1/2 for all lattice sizes, and seemed to converge rather slowly to 112 for L + 03. 

Convergence to P = 1/2 is indeed expected from universality with bond percolation. 
For p ,  we used the value 0.592 745 of [12]. 
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1 -0.0) 

-0.01 . 
.o.o* 

4. Conclusions 

Our simuiations provide estimates of two 'non-ciassic' criticai exponents for ZD per- 
colation which are by far the most precise to date. 

These estimates (8) and (9) together rule out the HerrmannStanley conjecture 
(1) by about 6 standard deviations. This is one of our main conclusions. 

Another motivation was to look for rational expressions of the exponents, as this 
could give some hope of obtaining them from conformal invariance. Of course it is 

';le eiioi 'jars Bie not 
zero. With errors as in (8). one can give already many fractions yith denominator 
and denumerator both less than 100. But we want somewhat more. For instance, a 
very good approximation to the spreading dimension would be d = 57/34. Inserting 
this into (3) would however give ./ut = 136811547, which does not look nice at all. 
What we want are rational expressions with small denominators for all 3 exponents 

=y to represent any redl nur,ber by a rations; a iong 

P i ,  2, "Jmi". This L3 haidei :o find. The cn!y p:"ng cz3-xd'ate ='e fe;iib ivzs 

ut = 46/39 dmin = 26/23 d ^ =  161/96. (10) 
We conjecture that this might indeed be exact. For the backbone dimension, the 
error is too large for selecting a uniquely looking rational expression. 
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